- Android自定义控件高级进阶与精彩实例
- 启舰
- 7171字
- 2021-03-04 18:45:24
2.2 Matrix类中函数用法详解(一)
在本节中,我们将详细讲解位置矩阵Matrix类具有的各个函数及其用法。
注意:如果在使用Matrix类的函数时,发现效果与预期不同,请关闭硬件加速后重试。
2.2.1 基本函数
2.2.1.1 构造函数
Matrix类的构造函数有如下两个:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_20.jpg?sign=1739483480-K1wvNSO7QB4rwAFnOUjekWanaCm6WOxk-0-efc6d7cf3a1bde764ac5792422bda742)
第一个构造函数经常使用,用于直接创建一个单位矩阵:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_21.jpg?sign=1739483480-ElbKXVMIJYxFqER9ATloOu7gwl5VIXuo-0-538096f16a1eba7b13ae9bd58d419a9a)
第二个构造函数则会利用一个已有的Matrix对象,复制出一个新的Matrix对象,其内部数据内容与已有的Matrix对象完全相同。
2.2.1.2 reset
reset函数的声明如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_22.jpg?sign=1739483480-yAOw4ezZ5RJJKQ8ElQ1Iq4cvk0A7IHAN-0-f7d4a76b993a660c4b660910e308e90b)
该函数用于重置矩阵,重置的矩阵为单位矩阵。
2.2.1.3 setTranslate
setTranslate函数的声明如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_23.jpg?sign=1739483480-RV6JYrMH776A9mYpxlbXNFamZCOkV7kJ-0-00d87cafe7ed627ab57b61e82930a528)
该函数用于设置X轴和Y轴的移动距离。很明显,在Matrix中没有三维空间的概念,只有针对X轴和Y轴的操作方法,没有针对Z轴的操作方法。所以,Matrix对应的是2D坐标系。
●dx:X轴上的平移量。
●dy:Y轴上的平移量。特别需要注意的是,Matrix使用的是2D坐标系,在第1章中,我们讲解2D坐标系和3D坐标系时就提到过2D坐标系与3D坐标系的明显区别是,Y轴的方向是完全相反的。下面将通过实例来证实。
下面对第1章中的示例进行改造,不再使用Camera来操作图像,而是直接使用Matrix的setTranslate函数来实现平移,代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_24.jpg?sign=1739483480-IRc3uxoBlFh0tDk5ImsCPUb8XE6KkZ2x-0-8ecc66f513dba88d68d73d582f7ea951)
效果如图2-1所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_25.jpg?sign=1739483480-COZ72MLdPNzbJFn251qmiGZdDJSycKCb-0-1985f37ce7fcb1d318dd052a93c4163b)
图2-1
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_26.jpg?sign=1739483480-gU43urBpKB5AAUpNVik0CrtkrTyGYIzW-0-864b78227cd32837cc0a3c37b722addf)
扫码查看动态效果图
修改代码,改为沿Y轴平移:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_27.jpg?sign=1739483480-r1GPhaTL67Twd2sTy9xLzGVdjy5l6MPQ-0-2ae25f8972b91790732630078c917ea9)
效果如图2-2所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_28.jpg?sign=1739483480-YwTwFKwV7NVK4vpQvih03hZp820pJpHe-0-f1f3183f240f8f770717026a2bf5cd7a)
图2-2
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_29.jpg?sign=1739483480-QnptyV3axx9XfJ2pHJZH2Qs8gZQ8ueph-0-38598e51413d01596ed0fd0901d8f3a9)
扫码查看动态效果图
我们回顾一下在使用Camera实现Y轴平移时的代码:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_30.jpg?sign=1739483480-qsQvOGxHB526IOBY1BmezIq11j3TK1NF-0-c8307c983febc182c2fae3684d57a253)
对应的效果如图2-3所示。
很明显,通过Camera和Matrix实现的沿Y轴平移的效果完全相反。下面来看看2D坐标系和3D坐标系的区别,如图2-4所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_31.jpg?sign=1739483480-E22JcpBg51YCkemtoPMWdFCBdedgrk3P-0-60662cc6e3d292ac37ae7b461669a0a9)
图2-3
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_32.jpg?sign=1739483480-VrJJM1LHBP3c4EBr8Vyc3c2u5OKbnwWb-0-0155f65a51d9a4a1cb33c3e277a833f3)
扫码查看动态效果图
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_33.jpg?sign=1739483480-m089xiiOh1w2SpyjJ6d7brH7uphyYCzw-0-7eacbd92e2353f9b3119bf70b3333717)
图2-4
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_34.jpg?sign=1739483480-9ZemJ8WNMzJT23QydlH3z3LaHNn0Zgij-0-83678a522e76f59011c13bf26a9c7bad)
扫码查看彩色图
很明显,Matrix是基于2D坐标系来进行位置变换的,而Camera是基于3D坐标系的。但经过Camera操作后展现的效果,最终还是通过Matrix来实现的。如果我们直接使用Matrix来操作控件位置变换操作,那么它使用的是2D坐标系。关于这一点,大家一定要分清。
2.2.1.4 setRotate
setRotate函数的声明有如下两种形式:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_35.jpg?sign=1739483480-H3RYdrL874azdNOxlgOudAldKWBIvWqa-0-96a4acbaa389c54f9ef1fbf921f91f71)
该函数主要用于设置旋转角度,参数具体含义如下。
●float degrees:旋转角度。
●float px:旋转中心点的X坐标。
●float py:旋转中心点的Y坐标。
在第2个声明形式中是没有旋转中心点的,默认会围绕控件左上角原点进行旋转,比如下面的示例代码:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_36.jpg?sign=1739483480-8XpQ5DD9zzl7EJd6j6tkVdNkhQZNcA9G-0-045c5393a43444ba8b7fe494e5579cfe)
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_37.jpg?sign=1739483480-vi8SLhAPIRqt7uuUpAsi3EmktMAniAOZ-0-cbd89155fec2a2b4378e4558b26b4c6c)
效果如图2-5所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_38.jpg?sign=1739483480-xvpSFWAPZSc9Dc5VzVhc9w52LrhQB9xd-0-93558b3c200eff0e6ead063bf425d62b)
图2-5
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_39.jpg?sign=1739483480-ZkDOHtLbuGsoFDcSwF7dgl8WWHIW028n-0-cef021fe5537ca9ff4746db31abeda73)
扫码查看动态效果图
可见,使用matrix.setRotate(mProgress)实现的旋转操作,是以左上角为原点来进行旋转的。
假如,我们将旋转代码进行变换,以(50,50)为旋转中心点:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_40.jpg?sign=1739483480-BFMC0pEDk3azq7lzmAg63OOpIiGcVbTR-0-8459cdb24c6ea577e5e84bc1667ab712)
效果如图2-6所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_41.jpg?sign=1739483480-Ky0SBb0wikyfQGGCVsXjcBMJ5ZhIypNE-0-38192cde3d9e60a453e8e49d705ab230)
图2-6
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_42.jpg?sign=1739483480-4wVJKCrE2UGbYmkWkVmJMnv0eS8kPjRL-0-e987b6c8b4603b23570c829bd19845f6)
扫码查看动态效果图
2.2.1.5 其他set相关函数
在Matrix中,还有其他set相关函数,由于理解难度较大,这里先不提及,后面还会讲解。
2.2.2 前乘与后乘
在Matrix中,除了set系列的函数,还有pre、post系列的函数。
平移相关的函数有:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_43.jpg?sign=1739483480-qZRL9zY8M8b8NdBgjRwEMTbPswQKSr9k-0-12687e6770c3ed5eee02e5981587c40a)
旋转相关的函数有:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_44.jpg?sign=1739483480-1LcNSao3PN0yMrJwifqklLURYbp2y21Q-0-0b562d6269d5c8f3545093f47c11ef23)
另外,还有其他操作方法,虽然此处没有提及,但凡是set系列函数中有的功能,都有对应的pre、post系列函数。
2.2.2.1 前乘与后乘的定义
既然每个功能都有pre、post相关函数,那什么是pre、post呢?
前乘:
前乘相当于矩阵的右乘,如下方公式所示:
M'=MS
M表示原矩阵,S表示另一个乘数矩阵,M'表示结果矩阵。
很明显,前乘表示原矩阵在乘号的前面。
后乘:
后乘相当于矩阵的左乘,用很容易理解的方式来看,就是原矩阵在乘号的后面:
M'=SM
同样地,M表示原矩阵,S表示另一个乘数矩阵,M'表示结果矩阵。
Pre与Post
以在原矩阵上使用matrix.preTranslate(10,15)为例,那么矩阵的乘法次序如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_45.jpg?sign=1739483480-1gud4Sikqgbg53d7VS6TWrJKxePvcoto-0-4319c17862ebec8a69488412c1008c9e)
在上面的公式中,Translate操作对应的矩阵的缩写为T,很明显,前乘的操作方式是原矩阵在乘号前面。
同样地,如果我们在原矩阵上使用matrix.postTranslate(10,15),那么矩阵的乘法次序如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_46.jpg?sign=1739483480-JGbppqCqZMURfK1p1T5brtjR6OZHgNzT-0-6bf0c87b61e8e69a26c4a137941ce142)
很明显,原矩阵在乘号的后面。
区分前乘和后乘的主要原因是,矩阵乘法不满足交换率。
再增加一点难度,如下面的伪代码,其中同时运用了多个pre和post运算,这时的运算顺序是什么样的呢?
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_47.jpg?sign=1739483480-KUXdVinsJpcq8bMb4P0uCLgT4QrTRHO1-0-84900de3ff7ac5b6b21af54f481a8cb7)
假设Translate操作对应的矩阵为T,同样地,Rotate操作对应的矩阵为R。
下面逐步分析这段代码对应的矩阵操作顺序。首先是第1步的代码:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_48.jpg?sign=1739483480-Ucz17P4hjeEOjdAlfJCIbuGdr6wzkqa2-0-134df276a5735cf903075af4f87ae2c0)
这一步创建了一个单位矩阵,假设该矩阵为M,此时的结果=M,其中
表示该步的结果矩阵。
然后是第2步的代码:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_51.jpg?sign=1739483480-XuEVLiok6H9WVKXLEzPOEuU4kIWL6hn3-0-e3258267dc7ee5fe1a52b11161bb12bf)
在原结果矩阵上前乘一个Translate操作,假设该Translate操作对应的矩阵为T1,整个运算过程如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_52.jpg?sign=1739483480-34WcITrksbGLQHYDugANwjKNoV5mwS6s-0-6e577b388c6ea8786fd5b073548e97b3)
其中是第2步代码执行完成后的结果矩阵。很明显,它等于当前的结果矩阵
前乘T1矩阵。
接着是第3步代码:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_55.jpg?sign=1739483480-Aqo5SbC76pJIBFXIcI8FRjYX6HLzXOmw-0-82e91724056b810206fd31ca6afc3e2f)
同样地,是在当前的结果矩阵的基础上前乘Rotate操作,假设该Rotate操作对应的矩阵是R,整个运算过程如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_57.jpg?sign=1739483480-XNQUFPUkfVZ91EmXxzDMTXBbcVeMzJoX-0-9e7d0fa8980b28d0e8ef2bd1e79ff9f6)
是第3步代码执行完成后的结果矩阵。
最后是第4步代码:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_59.jpg?sign=1739483480-38ke65F4DfoB8ppzn1OKh9oEN8ZnGwvo-0-45ddaa397408429c5a45855dfd6847c2)
表示在当前结果矩阵的基础上后乘一个Translate操作,假设该Translate操作对应的矩阵是T2,那么整个运算过程如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_61.jpg?sign=1739483480-dY6kMXPvSZOYs5WfGHmzjEgkd5hFtPre-0-969f7ea638b6122d2daab9644d8d4c57)
是第4步代码执行后的结果矩阵。可知,
是整段代码执行后得到的最终矩阵。
上述换算过程演示了矩阵的前后乘关系,以及如何通过公式表示整个过程,这个过程在后期代码中非常重要,很多时候,我们需要知道如何将想法转换成公式,最终通过代码将公式写出来。
2.2.2.2 更改旋转中心点
在第1章中,我们经常会在所有操作结束之后,将操作的中心点移到图像的中心点,即通过如下代码来实现,下面就来讲解代码的实现原理:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_64.jpg?sign=1739483480-YzHc2YmtyWd6YrQOxdK4iWCmQ2khWhKF-0-a00479b09811e6c8eee3869b4573a789)
首先,针对各种操作,有两条基本定理需要知晓。
(1)所有的操作(旋转、平移、缩放、错切等)默认都是以坐标系原点为基准点的。
(2)之前操作的坐标系状态会保留,并且影响后续的状态。
第1点可以根据第1章Camera的操作效果及前面的Matrix的操作效果可知。第2点是很明显的,我们每一步操作都基于前面所有操作的结果矩阵,这一点已经在2.2.2.1节讲过了。
基于这两条基本定理,可以推算出要基于某一点进行旋转需要如下步骤(所有操作中调整中心点的原理都是一样的,下面以旋转操作为例)。
●先将坐标系原点移到指定位置,使用平移矩阵T。
●对坐标系进行旋转,使用旋转矩阵R(围绕原点旋转)。
●再将坐标系平移回原来的位置,使用平移矩阵-T。
从上面调整旋转中心点的过程可以看出,其实是先将坐标系的原点平移到指定位置,然后在这个位置上完成操作以后,再把坐标系的原点移回去。
因为我们在第2步中执行各个操作时,原点的位置已经改变,所以操作后得到的就是我们想要的图像状态。最后,将坐标系原点位置移回去,这是为了不改变原来的坐标系位置。
在第1章中,我们已经讲解过,在调整坐标系原点后,图像的显示位置就会发生变化,大家可以自行尝试。
根据上面的步骤,将其转换成矩阵相乘的公式,即下面的公式:
M'=M×T×R-T=T×R-T
其中:M为原始矩阵,是一个单位矩阵,M'为结果矩阵,T为平移操作矩阵,R为旋转操作矩阵,-T反向平移操作(即把坐标系原点移回的操作)矩阵。
如果按照公式将其写成伪代码,代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_65.jpg?sign=1739483480-5TrMymk3sBy04TCzr5xefBQMuRaMLw6G-0-8a56ce8153894ee5f14ae68e1d1c9abb)
所以,如果对该代码进行扩展,改为任何操作改变坐标系原点的通用情况的话,矩阵乘法公式变为:
M'=M×T××-T=T××-T
其原理也很简单,先通过平移操作将原点位置移到指定位置,然后对图像进行各种操作,操作完成后,再把原点位置移回去。
相应的代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_66.jpg?sign=1739483480-rgm3epo9xM7JeJjfZDiuQhQAgSjh0N7q-0-94c0b4ec3f1117c40966dadd2998c57c)
上面的代码逻辑非常简单,就是从前往后,每执行一个操作都使用一个pre函数,这样写虽然逻辑简单,但两个调整坐标系原点的平移函数——preTranslate函数,一个在整个代码段的最前面,一个却在整个代码段的最后面,就公式而言不好记忆,所以通常采用这种写法:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_67.jpg?sign=1739483480-J8GX7Cut8DJj5XLqu7x8NKXNTbF46Rv2-0-018caaa754e682238ec7130a7b92b46d)
即先做各种操作,然后使用preTranslate函数和postTranslate函数来操作。
这段代码所对应的公式如下:
M'=T×M ××-T=T××-T
因为M是单位矩阵,所以最终化简结果与上面采用两个preTanslate函数的结果是相同的。这完全利用了前乘与后乘的功能。
因此,pre和post相关函数就是用于调整乘法顺序的,正常情况下应当以正向顺序构建出乘法公式,之后根据实际情况调整。
一般情况下,我们在确定矩阵公式以后,仅使用一种乘法(前乘或后乘)形式,这样的代码更容易理解,出问题时也容易排查。如果混用前乘和后乘,则会造成混乱,理解难度加大。但大家只需要理解了上述转换过程,无论别人如何混用前乘和后乘,对你来说都不是问题。
2.2.3 其他功能函数之缩放(Scale)
在理解了前乘和后乘的意义之后,我们继续讲解2.2.1节中没有讲解完的功能函数。
缩放功能涉及的函数有:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_68.jpg?sign=1739483480-EWUAU1ZRlrQkbqhKNGMc0FUkG5So8k6w-0-0e47c250abbd729c6571d1f7cf5791d4)
可以看到,函数名中除了有set、pre、post前缀的区别外,主要有两种声明方式,下面以set系列函数为例进行说明。
●float sx:代表X轴上的缩放比例,取值范围为(-∞,+∞),其中+∞表示正向无穷大,-∞表示负向无穷大,所以(-∞,+∞)的意思是可以取数值区间里的任意值。
●float sy:代表Y轴上的缩放比例,取值范围仍为(-∞,+∞)。
●float px:代表缩放中心点的X坐标值。
●float py:代表缩放中心点的Y坐标值。
其中sx和sy最好理解,就是指常规的缩放比例。当缩放比例在-1<sx<1时,缩放效果是缩小;当缩放比例在sx>1或者sx<-1时,缩放效果是放大。另外,缩放比例还有正值和负值的区别,缩放比例取负值时表示根据中心轴进行翻转。
px和py比较难理解,它们表示缩放中心点的坐标值,在默认的情况下,缩放中心点位于图像左上角。而(px,py)表示的缩放中心点是什么意思呢?在缩放时,又是如何根据缩放中心点来进行缩放的呢?我们稍后一并分析。
2.2.3.1 Scale函数的具体作用
在本节中,我们来看看sx与sy取不同值时的效果。
为了方便理解,我们以一个demo为例,新建一个自定义类View,继承自类View,其专门用于测试Scale函数的相关参数,该类被命名为testScaleView,其实现如下面的代码所示。关于onDraw中的具体内容,我们会放在后面具体讲解。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_69.jpg?sign=1739483480-5RbPm8plNK4UAv7dzdjFKMtbJo8FQDdr-0-5c2c31aba5d5884060f0f36056dfa9b9)
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_70.jpg?sign=1739483480-OIxyYg9TFLq2OOuxd9Zta4BEvIM5C4r6-0-fc4e91d2e4aabe1b11f1f7facdd3aac7)
在使用testScaleView时(activity_test_scale.xml)进行全屏展示:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_71.jpg?sign=1739483480-lwwy1sRwim7DYuwnPqDNXV64ZmxXF2zJ-0-fff84ee0f21d978f256831a64f96545d)
效果如图2-7所示。
根据如图2-7所示的效果图,我们来重新看看在onDraw中具体执行了哪些操作。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_72.jpg?sign=1739483480-JgpOXSarmLR0BOekZMeVF4vRoS6PpqLo-0-decce2fc2037c6f36b505171074ca72f)
图2-7
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_73.jpg?sign=1739483480-b8rnO5e0tSlz20CSCcdnek1mkMKU6o4J-0-53a9b58070dacc64dc7f9be23ffda4ee)
扫码查看彩色图
1.移动坐标系原点位置
相关代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_74.jpg?sign=1739483480-HsjEg3d3JnfO4e65JZB5fNpO8Sdb1Wqz-0-121cc5ed379571677d95073510c5630d)
因为testScaleView是全屏显示的,默认的坐标系原点位于View的左上角。为了方便理解,先将View的坐标系原点移到整个View的中心点位置。
2.绘制矩形
相关代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_75.jpg?sign=1739483480-rBovvPQlgOKPwmDke5Z4wvZYpnUnKVM8-0-bce14170d10f51fc2fdf5c52f19c6c31)
根据最新的坐标系位置,绘制出矩形区域,如图2-8所示,图中标上了坐标系,方便读者理解。
此时画出来的是RectF(0,400,400,0)这个矩形,即黑色方框。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_76.jpg?sign=1739483480-pYCWXIEsr2iPZYatWbZfHrEZGOvuNfBu-0-1b7df2640a51085b5e01659567a8f968)
图2-8
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_77.jpg?sign=1739483480-NgHbnNr8G1SvcpskwEhvSBkPUcZHMo21-0-f9ac4cb0bb9c1cbbf469a51b84d0c461)
扫码查看彩色图
3.缩小标尺
相关代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_78.jpg?sign=1739483480-N7YqFRWyS8kBBgtHKGSSGBudKpQqPTmB-0-51607e65af1c74e8c96a2d9019a41358)
需要注意的是,matrix中的所有操作都是针对坐标系的,比如上面的translate函数,在操作后,改变的是坐标系的原点位置。同样地,scale操作同样针对的是坐标系上坐标轴的密度。需要注意,我们可以分别针对X轴和Y轴缩放标尺密度。
比如,这里的preScale(0.5f,0.5f)就是将坐标系X轴的标尺密度缩小为原来的50%,即原来10像素的宽度现在变为5像素的宽度,但它表示的仍是10个像素,变换过程如图2-9所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_79.jpg?sign=1739483480-yQLH77LC0OfV9IpG5uWFIvAF0THxPwpE-0-3ccaa66c1bcf7be5b063e0fefe7d8e6f)
图2-9
图2-9表示在标尺密度缩小为原来的50%后,表示同样的数值仅需要原来一半的标尺宽度,这就是Scale函数的作用。
4.重画矩形
在缩小了标尺密度以后,我们重画RectF(0,400,400,0)矩形:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_80.jpg?sign=1739483480-ci9ybn4UkKvGCImwwCtpNRYvdG1oLV6v-0-ba9ae0d24efd47a323c92d21181e2c92)
此时,所画的矩形就是在缩小密度后的标尺上绘制的,绘制的矩形就是效果图中的红色矩形框。
2.2.3.2 sx与sy的取值
上面已经提到,sx与sy的取值范围为(-∞,+∞)。当缩放比例在-1<sx<1时,效果是缩小;当缩放比例在sx>1或者sx<-1时,效果是放大。另外,还有正值和负值的区别,取负值时表示以中心轴进行翻转。
在前面,我们已经讲过sx和sy同时取0.5时的效果,而取值大于1时会出现放大的效果,这里就不再演示了。
下面着重演示一下,取负值时的效果。
我们将代码改为:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_81.jpg?sign=1739483480-Ez9t20rU4CzhjAjaY6EiAnROseCfoJoz-0-1b8ecb389a1da39c3a85633dc50d5520)
这里其实只改了一句代码:matrix.preScale(-0.5f,0.5f);,它的意思是不仅将X轴和Y轴的标尺密度同时缩小为原来的50%,还将X轴的方向进行翻转,原理如图2-10所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_82.jpg?sign=1739483480-8qtcq7XPHfFwNeFqpoFu4HD4nfCj16Qe-0-8422c952f51652d7d0d3d8e071b7feb3)
图2-10
左图表示正常情况下的X轴与Y轴的正方向,右图表示X轴翻转后的X轴和Y轴的正方向。
在这种情况下的效果如图2-11所示。
效果图不难理解,黑框位置没变,红框在X轴上进行了翻转,这就是取负值时的效果。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_83.jpg?sign=1739483480-YEBB8yVi038gNKlBOohu1crXSFRsa1BX-0-ed60202284be9f4feddf092d3e493275)
图2-11
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_84.jpg?sign=1739483480-2taaUGjDIhEPpwDonQVBSuAhFOOhY0eH-0-3cf9a23419b2a673e3ca5cd4cd9d7924)
扫码查看彩色图
2.2.3.3 缩放中心点的作用
从各个函数的声明可以看到,除了sx、sy外,还有px、py两个值,比如:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_85.jpg?sign=1739483480-7wNx9nJACO9H3TwxcK9e0bYAX4wH4ch7-0-b0c2a78eacb2fe4ae6ccc60daee10e9a)
从前面的内容可以知道,px、py表示缩放中心点的坐标值,但缩放中心点是什么意思呢?
因为Matrix的源码在Android中是用C语言实现的,但Matrix的具体实现与Canvas中操作位置的函数相对应,Canvas中也有缩放函数,它们最终也是通过Matrix来实现的,Canvas中的scale函数声明如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_86.jpg?sign=1739483480-AB5aUIsU2Oj39ESj05UhFkXcARWvIJbR-0-73fb01ad6362dc11fa5a186c7a3819f0)
如果深入Canvas的scale函数的源码中,就可以看到它的具体实现:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_87.jpg?sign=1739483480-YFXaX8aSxokXtLgzOrXap6bac5cVtSNr-0-d819a1dd29c11996dbf232162da1eeee)
其实这就是Matrix的带有缩放中心点的Scale函数的具体实现,分为如下3步。
●第1步:将坐标系移动到由px、py指定的位置。
●第2步:根据sx、sy的值缩放坐标系。
●第3步:反向移动(px,py)距离。
这里有一个陷阱需要注意。第1步和第3步是完全相反的操作,有些读者一马虎,会把坐标系原点移回原来的原点处。大家千万不要忘了还执行过第2步,第2步将坐标系进行了缩放,而这会导致在第3步中虽然移动了同样多的像素点,但所对应的坐标值根本不一样。参考上面红框与黑框的关系,这一点很容易理解。
下面,我们举一个例子:同样是上面的缩放例子,但此时,在X轴/Y轴的标尺密度同时缩小为原来的50%时,选定一个缩放中心点(400,400),代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_88.jpg?sign=1739483480-WA1VcycMBQiEIKXAWVMwFxgVcmCv7DPT-0-c8c630cf6a33e2792c4b5445bb9f1046)
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_89.jpg?sign=1739483480-Ec0NIwKMOQhEuOVPPCscJRsYJwDzydzU-0-98c58e236cc44a5e605cbbcfde61de59)
此时的效果图如图2-12所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_90.jpg?sign=1739483480-q9SBU7NsDdd2TBDPfMzAhxbhVpNpSQrK-0-ec29321d58a8c8e633514ae05c92c60a)
图2-12
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_91.jpg?sign=1739483480-qGxnJU0Ej8YSpjH9p4csY5xI8mwJjAWW-0-fa8b24395d6b86b28d34b8311de20830)
扫码查看彩色图
它的完整变换过程如图2-13所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_92.jpg?sign=1739483480-XB5phiEICf4zDTWeWELQb5w8DTRg0S0u-0-8f5862472e44e2568cdc48effe6bd7f6)
图2-13
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_93.jpg?sign=1739483480-JMhrBfyBWbSWdT6SuLOOoN839aXI7sDQ-0-685257c6643aef31c536d124909cbaeb)
扫码查看彩色图
从图2-13可以清晰地看出,matrix.preScale(0.5f,0.5f,400,400)函数所对应的3步变换过程。需要注意的是,变换开始时,坐标系原点在黑框左上角,而当变换结束时,坐标系原点已经变到了黑框中心点位置。因此,这一点需要特别注意,在使用缩放功能中带有缩放中心点的函数时,会改变坐标系原点的位置。具体使用后,原点位置在哪呢?可以在所有操作结束后,利用canvas.drawCircle(0,0,5,mPaint)函数,在坐标系原点位置画个圈。比如,我们在Scale操作结束后,利用该函数来画个圈,相关代码如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_94.jpg?sign=1739483480-MCbov7Ez6iGe3P81CRNHrZtw3PyB0hHk-0-92be3c7b5d94cbc188da29795270184c)
效果如图2-14所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_95.jpg?sign=1739483480-2p6abKPduTD5IHl84MTm3eASldXrFVOb-0-8d40e0978cdfc1ddd88c9b4e9deb120b)
图2-14
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_96.jpg?sign=1739483480-UybirLbyb17N4LXnxgza8T8F6KlwDNAk-0-c0d0ba69bca34aaba87d547c6e016171)
扫码查看彩色图
2.2.4 其他功能函数之错切(Skew)
2.2.4.1 错切的意义
在正常情况下,坐标系中的X轴与Y轴是相互垂直的,而错切的意思就是让某个轴倾斜。
X轴错切(如图2-15所示):
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_97.jpg?sign=1739483480-82UJvcqk8bohCdxwVY1ANMSlbQQ5eoBH-0-6edf6568bbd07bbb0facf22a5e0a2394)
图2-15
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_98.jpg?sign=1739483480-xCAV53etK3RPjWSWb8725ZB4VAOUSzGk-0-5a4566d83fc6cc5ec99f6279e0153d42)
扫码查看彩色图
X轴错切时,是保持坐标系的Y轴不变,X轴的值做线性变换,表示如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_99.jpg?sign=1739483480-cY942Nhlldmj4sjinlbbF5yEGWZ6xT3I-0-da711877b5d1513e1f2cab6035cfe39a)
可以看出,对应到每一个点上,y坐标都没变,而x坐标都向后推了ky0的距离。所对应的公式如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_100.jpg?sign=1739483480-bB8btY3X0u3EABeZ3eE9KnJ9j5XLpzV1-0-ca67d3e46d58fb10707d1aa188a8b3e1)
注意变量k所在的位置,前面我们讲解位置矩阵的各个标志位时,已经提过该位置的含义,其主要用于标识SKEW_X:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_101.jpg?sign=1739483480-22d3lBHfO8tYQcchlRUpNMdoN3Jwf6iM-0-a3ba359c7ccaea419deaf6446ccb7dd7)
需要非常注意的是,在X轴上移动ky0距离后,倾斜的是Y轴方向,X轴方向上没有变化,从图2-15可以清晰地看出,斜率k表示Y轴方向上的倾斜程度。也就是说,在X轴错切后,改变的是Y轴方向上的斜率。
Y轴错切(如图2-16所示):
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_102.jpg?sign=1739483480-UPnWLOXD5Yt1bYBvhT7LWQ1o5NYGCzkZ-0-305f26e1bccee80babecca7cfbb84d01)
图2-16
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_103.jpg?sign=1739483480-qoQ1WffK6nR1tGk1bMjYXElrkljGVZp4-0-f5d29f89eb9582c7523b9e80166893d1)
扫码查看彩色图
同样地,所对应的公式如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_104.jpg?sign=1739483480-olfXSZZihGWRZ8LFmlJ4krMYttBVgQlX-0-d860c50a3bdaac61378f31ed572f88aa)
同理,在Y轴错切时,改变的是X轴方向上的斜率。
X轴、Y轴同时错切(如图2-17所示):
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_105.jpg?sign=1739483480-IHpMlpR5sJqtbjd2l2ZwPtAyqb5kNU4A-0-50842852c729db72ba295785cd44dcbb)
图2-17
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_106.jpg?sign=1739483480-oxYTcvLaWQuPbZLj9I4oUcJfQXmLVvjC-0-86c7c8d9fded8ecd8bf493e7364eb565)
扫码查看彩色图
在X轴、Y轴同时错切时,表示在X轴和Y轴方向上同时倾斜一个角度,很明显,两个倾斜角度是完全独立、各不相关的。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_107.jpg?sign=1739483480-WczHU2ZIaFNo3clNjG5lM0Yj6xwDZrZS-0-49a2578b2635428212e17f8553ed837c)
m表示X轴方向上的错切值,n表示Y轴方向上的错切值。
2.2.4.2 错切的用法
在了解了公式之后,下面来看看Matrix中Skew相关函数的声明及使用方法:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_108.jpg?sign=1739483480-ViqArHKFbuJBgLmcd6Ce3jvuYGXAMvSs-0-41c701031cc6dd729418e83ed9c1c41a)
同样地,除了set、pre、post前缀的区别外,其实只有两种声明方式且涉及4个参数。
●float kx:将原坐标点在X轴方向上移动一定的距离,即在Y轴方向上倾斜一定的角度,kx的值是倾斜角度的正切值。
●float ky:同样地,将原坐标点在Y轴方向上移动一定的距离,即在X轴方向上倾斜一定的角度,ky的值是倾斜角度的正切值。
●float px:与Scale相关函数的参数一样,表示错切的中心点位置的x坐标值。
●float py:与Scale相关函数的参数一样,表示错切的中心点位置的y坐标值。
与Scale相关函数指定缩放中心点的意义相同,setSkew(float kx,float ky,float px,float py)所对应的操作如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_109.jpg?sign=1739483480-C6pvmirA7BkotOxKFSjzNBaJ7kCYt0Dv-0-578e6f4fc11feb48bc965afdd1ccfbd6)
同样需要注意的是,虽然第1步和第3步看起来是完全相反的平移,但因为第2步的错切操作改变了X轴和Y轴方向上的倾斜角度,所以在经过第3步后,会改变坐标系原点的位置。
下面对代码进行整改,将上例中的错切操作改为matrix.preSkew(1,0),即在Y轴方向上倾斜45°:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_110.jpg?sign=1739483480-QrNGabIfgPjPS3eDen3lAGJ7iCNnU0oN-0-d4ecdb2ef3742ed4f8eac9ab979998c0)
效果如图2-18所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_111.jpg?sign=1739483480-7RFcdK90j3N9dygVm0wpGJQsFe9b2g4l-0-e2ec8021fd612fe020bfaad704b02105)
图2-18
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_112.jpg?sign=1739483480-lIsTNcmYc1R4G5xG9FnnAyEDObtJqNpr-0-64768fbed427c754ea6bf7feb1c7dab5)
扫码查看彩色图
可以看出,由于Matrix操作的是坐标轴,所以在Y轴方向上倾斜45°时,所画矩形已经不是正常的矩形了,这是因为Matrix改变的是坐标轴方向上的倾斜角度。
下面再尝试一下matrix.preSkew(1,0,200,200);:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_113.jpg?sign=1739483480-ngFwQSZmF7PTcv7cZy6lhJ30SQ7LD8He-0-df9c4584c31bc6b86051d07cb39bdcf6)
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_114.jpg?sign=1739483480-P7y3MEXWdmv3ElSM4pPvF1LqMdS73mjF-0-ba840949ddd0eac39f500a0651e9b1e8)
这里什么都没有改变,只是单纯地使用了Skew相关函数有错切中心点的声明方式,错切中心点为(200,200),效果如图2-19所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_115.jpg?sign=1739483480-i4wf8bBnGqMpkEoxp4nsrdE85oRFaoIU-0-8452a0ed0d93f1907aacf33ca40e0d4d)
图2-19
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_116.jpg?sign=1739483480-ly1qCmcOFBsvpqdX5tB428S2XYewBnev-0-3b99a3f15d875149322caca2f98deb71)
扫码查看彩色图
乍一看可能有点困惑,图2-20展示了以上完整的实现过程。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_117.jpg?sign=1739483480-CCFeh8V23enAoyNjlyB3YW7P8F0hAQFn-0-5501f7109f8404fecbe935f61099967f)
图2-20
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_118.jpg?sign=1739483480-blpOd6KMi4VL3omOkfnmDwYvXq5Tjtk6-0-700fc4c9b7ab13ba88e51570480c144b)
扫码查看彩色图
在第4步中,回移至点(-200,-200)可能会让读者产生疑问,下面我将这一步进行分解,如图2-21所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_119.jpg?sign=1739483480-ohUt1DWV0Qe3VClazU2pjBJU8oThhnKS-0-4302062a4952fa3a4fd1dfce86ded5e8)
图2-21
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_120.jpg?sign=1739483480-PM1Yg7ZDjlWlrdDvTfCnk6vkGAWo5Nu3-0-f6b9097ee818de116297a14dbdf99ddf)
扫码查看彩色图
2.2.5 其他功能函数之setSinCos
setSinCos函数主要用于旋转操作,但它的函数声明比较特殊,如下所示:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_121.jpg?sign=1739483480-PVXVUAyIfGaBOSvh48o2WWDwkVhKrvFU-0-6335d95d5a3888ee867f64957bc20f71)
●float sinValue:旋转角度的正弦值。
●float cosValue:旋转角度的余弦值。
●float px:旋转中心点的x坐标值。
●float py:旋转中心点的y坐标值。
关于旋转中心点(px,py)的意义,与上面介绍的各个中心点的意义是相同的,setSinCos(float sinValue,float cosValue,float px,float py)其实也执行的是下面3个步骤:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_122.jpg?sign=1739483480-dw8kTEd5oLTIfNle3sXQHUMR8kcun2d4-0-7eb390470742a0a9df68da7a997483bc)
在这里,我们就不重复讲解了,大家可以实际操作一下,然后利用画图解析的方式来复现一下它的操作步骤。
2.2.5.1 setSinCos函数的意义
在调用public void setSinCos(float sinValue,float cosValue)后,所形成的矩阵如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_123.jpg?sign=1739483480-vWhtKIa5Jdxyt9tYETThsyY4Igpgfp1K-0-104b19c554a8f9da37787c860af761a0)
这个矩阵形成的原理如下:假设有一个点P,其相对坐标系原点顺时针旋转后的情形如图2-22所示,同时假定点P离坐标系原点的距离为r。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_124.jpg?sign=1739483480-1NNYoGzvxiGsB8ZYqxc95pS2OzSqjNgE-0-4610bcacd3b18432379318604d0d7780)
图2-22
假设在未旋转前,点P所在的位置为(x0,y0),而点P离坐标系原点的距离为r,所以用r计算出来的(x0,y0)如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_125.jpg?sign=1739483480-5u95K6vRMPCePgxUvKj280O4RevkZDEp-0-11f86699427cd4d8af8712b702c40b57)
假设在点P旋转θ角度后,其新坐标用(x,y)表示:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_126.jpg?sign=1739483480-0eBDMjURljVXmwiBT902lPuTEso4pbLY-0-13e86be914c00e717b22986f7783e17b)
转换为矩阵表示如下:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_127.jpg?sign=1739483480-FsJ5UuxvGfqZ5DU5x3P3AiWoE68rw2J2-0-f7fb6582ee1c61cff7d7cf79a14599fc)
所以,setSinCos函数只是一种旋转方式。一般情况下,不怎么使用这个函数,而使用Matrix的Rotate相关函数。
2.2.5.2 setSinCos函数的用法
下面演示一下setSinCos函数的用法,将示例代码改为:
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_128.jpg?sign=1739483480-BP56m2IQ6IXObE0Vz1nk91b93DlDiAYv-0-92e0b4abf86ed512b6f6ba8787ace679)
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_129.jpg?sign=1739483480-kM0uUeHz9bbq6imSSv7KEDQt3Xzi5vFY-0-54be2ab2461a5bc589e227cbd732cb4f)
代码长了好多,下面逐步进行讲解。首先,第1步画黑框部分的代码没有变化,这里就不赘述了。需要注意的是,为了进行区分,将构造的Rect实例改为了矩形。
在第2步中,我们并没有直接使用matrix.setSinCos函数,而是先生成了一个tmpMatrix,然后利用matrix.preConcat函数将旋转操作组合到原Matrix数组上,这是为什么呢?
因为Matrix的所有setXXX操作都会把原Matrix清空,然后执行所需的set操作。所以如果直接使用原来的matrix.setSinCos函数,就会发现Matrix原有的Translate操作都没有了。为了能让移动和旋转操作同时生效,需要使用Matrix组合数组的功能函数。我们在后面会讲到这些函数,也就是matrix.preConcat(tmpMatrix),它表示在原数组前乘tmpMatrix,所得到的结果必然同时具有移动和旋转效果。
在第3步中,代码也没有变化,都是在操作坐标系之后重画黑框,下面来看看操作坐标系后的效果,如图2-23所示。
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_130.jpg?sign=1739483480-rGiQXn5zupesxdEc036AXRZnsUuiD3EC-0-e10c14a3006917b2d5b50614a744d63d)
图2-23
![img](https://epubservercos.yuewen.com/0CBE40/19391577408683706/epubprivate/OEBPS/Images/txt002_131.jpg?sign=1739483480-4qpjyjUhDBsUuS9dM0Ut2ySKp6bFPuVk-0-2d96c7e4d0db12e8ce909cafd0c8ffd6)
扫码查看彩色图
到这里,大概了解了Matrix中一些函数的用法,但Matrix中的函数不止这些,后面我们将继续讲解Matrix中其他函数的用法。