- MATLAB矩阵分析和计算
- 杜树春
- 315字
- 2021-04-02 01:00:19
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739534481-SkZ3DI9HlIIi11K42CN244zVN4i5rROL-0-56503a33aba9a20e676644ba9fa840a0)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739534481-t0a1EsF3wkqH5l3Mzapssiup7mZPjZSh-0-fbec6dcfe313f37619e35774b7f12fd4)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739534481-GTGhF713D7busFDTbYXQoAtUzCbVT6sc-0-c38460cb95176916210ea3db48373ff8)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739534481-sT2XjUAHsf46T7M9Q7Mx2NPXgu6vx8nl-0-1a4613331c3427a17ac2b5584c413181)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739534481-NqFBngvRing89ORUcTkyQMs7L5RgMInZ-0-3e1ddc6e5b64e4961d4dba2de9d01eb7)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739534481-UqRKDbP33cx0VJnk6tkQWEwf69Ut6UT1-0-c09f2e274ca563e2b734b859839d2095)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739534481-AjIPSy8HTU9V1QF4A23XdGm4Vot1plBl-0-0ea655cdbae1322eb52d0561e120450f)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739534481-ZL1HoBClexp1AINLhEIxiQ85vPjArQuJ-0-bf2cc3c3523ecaa9cc2ec43e84af16ca)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739534481-gon2G38eStAMYKaBUVJDzRvZnn2qqXiy-0-7b9d8ac0ddb742310603df00400adec1)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739534481-QNVDD7NLgEFMgywlDz5UGA6UIuUX6gca-0-edb77865b8b3ddc17746d3bc0c0a5ad4)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739534481-Vrh3WsrUy8F4sAddJEDFhtr3f82suZmP-0-138e83205971ae68c1334b8306f42f0f)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739534481-B35klyTi6o79KP0kiwYLXjrvfNK6etBR-0-bec65b0a21d39dd027e76e103e8f9466)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739534481-sTn0z6hexre9lK3zy7QEdB9aVgI7kEZB-0-dc3cd6fddd13b4d8fc2595c0538fbcf1)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739534481-HsVkRXMSFmlsIiqlSLAR1Ec5YvKv1fOs-0-1ce0dcf700c373cf32d073acda27e44f)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739534481-RQlyo5UxfdWnRdljDFxWqeLOETdU60cL-0-f73b8a676c6d1e1523ba7e64a13982af)