- MATLAB矩阵分析和计算
- 杜树春
- 359字
- 2021-04-02 01:00:18
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739303786-JOp9YvUcCQGtO1CpR5Og0sXTyWjGHmK9-0-0f989eaa5f5b1f572b7360b970278c84)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739303786-kjx94bGGRiAaAcK33pS3XFtaD5lHPOkG-0-35b08faa9d445ff40e153f269f39dec1)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739303786-VMnOX97cBUQUy0mQjn3G1o2d8hi0XSU2-0-a50670b9ed3edc22d7cf99f8030e2552)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739303786-MG8sYlak2k6R5rKOGuWi0cagTYA51u9V-0-bd3ac8f810cc8923dabba3d38458a2c8)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739303786-aH5fgfw6RscopQOBjdAQKipxeZRRO0LD-0-64b1a15f946f22bd4ac8d37ad8426739)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739303786-FExGi7HpfqmHSIaydzwawYsWhgeAoqs9-0-8810cb9cd0ffc15ca1547b03a000725d)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739303786-Sq1xBIhPcQevMDvdNEashdFzxDF9HIPt-0-2c6845cf020ce52106d3d85c3a6e2778)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739303786-U7DOys2Buvj5CCXMsz6y15RqqXaxCSGs-0-d0196d58c746912c9678b9eb1aea918d)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739303786-2LOwtC007ljGgEc0hzB8DueJvXhZlha7-0-405173c9043d5b84f06e77fbcdcc0db1)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739303786-lv7ONTGmWAHpsXKgemOellTSsxDz0qbq-0-3b220105ddebc3da1fff20cccb933dde)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739303786-zaMFhVJD1lnboTGHIGGxzEn58fzguHw9-0-d18ed43ba22487b0cb9d63e6ec8e9ab6)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739303786-rrKyQ2GoovJakeuWU1z51fZfWn1wV38u-0-64d0ae9148e2d350b4332c9e2eb31280)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739303786-bzLBthqUFtVPaR79hTllB6Oobw9HphZR-0-4b2e51e567c140655f7c5faa70f2795a)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739303786-QyvoAGjVsNbYsRmEtmb9Xj5VhJcHrLOt-0-1f0f8e0a9ec2ba7ecc2b6f65dd851910)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739303786-fzkjQvWlZNksH9EOC9M6hcX90La2wENW-0-ee53eed9a3411bf1353e8bb0f27115b1)