- 深度学习:卷积神经网络从入门到精通
- 李玉鑑
- 207字
- 2023-07-26 11:56:27
2.3 导数公式
sigmoid函数的导数是:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0032_0004.jpg?sign=1739675584-dY9JK3qtkpb2hqwafBZIiV8hD37XeDiE-0-36cc978acc7863067d919c431b5ed1c6)
双曲正切函数tanh的导数是:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0032_0005.jpg?sign=1739675584-Cce5U0XnDtIiFAFJkuWxdvmTVBMcemT3-0-c3ca70489bd039558d2e34b22b09f148)
校正线性单元ReLU的导数是:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0032_0006.jpg?sign=1739675584-MjRJ4IbEyRKb8PSoySAE4nQ6KMFIfdJn-0-03bc057d91a1da3b8104e90094dc9118)
如果x = (x1, x2, …, xn)T,那么逐元向量函数的导数是:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0032_0007.jpg?sign=1739675584-PwBBqovpB5c2clVuWBETcT028R4ZW8Ec-0-413974cfb8b503aac3eb3428f4c93de2)
如果X = (xij)m×n,那么逐元矩阵函数的导数是:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0032_0008.jpg?sign=1739675584-O6SlZsEiFXoLT7iRE0Q0lSJqpDuejOY6-0-e927c626e1e94c60ccc676835da11b3e)
如果a、b、c和x是n维向量,A、B、C和X是n阶矩阵,那么
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0032_0009.jpg?sign=1739675584-CviXkDaMT4CH2H5wfkM0hSHhpLizXB0A-0-43981f2ccaf796579c5440f8afc076e5)
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739675584-MR9V6VG6nSRqGHjFMzqQOjKZW7wQ7nMF-0-c129a0d65a15b8f3938038baaa7c92d0)
如果用Tr(·)表示矩阵的迹函数(即计算矩阵的对角元素之和),那么不难得到:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1739675584-iKjt5cO9l3PLECLSiIdf9xfzBERsR6qa-0-56e67e7ba4f1eaca36e99045d55e615c)
如果U = F(X)是关于X的矩阵值函数且g(U)是关于U的实值函数,那么下面的链式法则成立:
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1739675584-sdgJSJpINM5eaorvxcQa69tGIZGIBo2k-0-e99dd66eeb0ccc17aa8dd6d73c383738)
此外,关于矩阵迹函数Tr(·)还有如下偏导公式
![](https://epubservercos.yuewen.com/E65590/11298848104511106/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1739675584-bXgLbJL2sUvjI5JPck94adLXR1xJW3Bj-0-2fcd901a99eebf11ff93c752d625e917)