会员
大学计算机应用基础实践教程
更新时间:2019-10-14 15:02:42 最新章节:7.9 信息安全技术习题解答
书籍简介
本书是与《大学计算机应用基础》(李展涛、谭鸿健主编,中国铁道出版社)配套使用的实践教程,内容包括计算机系统、Windows7操作系统、文字处理软件Word2010、电子表格处理软件Excel2010、演示文稿制作软件PowerPoint2010、计算机网络等。书中的实验设计注重概念与原理相结合,突出操作性,帮助学生掌握计算机基本操作技能。实验分为基础实验及综合实验。基础实验有详细准确的操作步骤,引导学习者逐步完成实验任务,掌握基本操作方法;综合实验适宜在教师指导下进行,旨在提高学习者的综合应用能力。本书适合作为高等院校非计算机专业学生和计算机专业专升本学生的实验用书或教学参考书,还可作为各类工程技术人员和管理人员掌握计算机基本操作的自学教材。本书具有一定的独立性,书中对需要掌握的基本知识做了简要的阐述,尤其适合自学使用。
上架时间:2017-08-01 00:00:00
出版社:中国铁道出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
李展涛 谭鸿健主编
同类热门书
最新上架
- 会员本书深入剖析了互联网主导下的数字广告系统,详细阐述了如何通过数据驱动的产品技术、计算算法和动态定价模型来推进广告主的数字营销,并使其在广告领域与技术广告体系全面融合。同时,本书还探讨了数字化升级对广告业流程的影响,包括市场研究、内容匹配、定制化广告、广告竞投以及消费者沉浸式互动和用户忠诚度提升等营销职能。这些内容共同构建了数字化和智能化广告发展的综合知识体系。全书分为三篇(共10章):第一篇为基础计算机30.5万字
- 会员《深度序列模型与自然语言处理:基于TensorFlow2实践》以自然语言和语音信号处理两大应用领域为载体,详细介绍深度学习中的各种常用序列模型。在讲述理论知识的同时辅以代码实现和讲解,帮助读者深入掌握相关知识技能。《深度序列模型与自然语言处理:基于TensorFlow2实践》共12章,不仅涵盖了词向量、循环神经网络、卷积神经网络、Transformer等基础知识,还囊括了注意力机制、序列到序列问题计算机21.9万字
- 会员《UI设计基础与应用标准教程(全彩微课版)》围绕UI设计进行编写,以理论+实操为编写原则,用通俗易懂的语言对UI设计的相关知识进行详细介绍。《UI设计基础与应用标准教程(全彩微课版)》共9章,内容涵盖UI设计学习入门、图标设计、控件设计、动效设计、App界面设计、网页界面设计、软件界面设计、界面的标注与切图、综合实战案例等。在介绍理论知识的同时,穿插了大量的实操案例,第1~8章结尾还安排了实战演练计算机6万字
- 会员本书以实用、够用为创作原则,以普及计算机使用方法为指导思想,在主流Windows10操作系统的基础上,用通俗易懂的语言对计算机的基础知识及基本应用进行详细阐述。全书共9章,包括计算机的发展历史、系统组成、硬件设备、Windows10的基本操作、个性化设置、文件与文件夹的管理、系统自带工具的使用、三大办公组件的使用、多媒体技术的应用、计算机网络与信息安全、网络新技术等。除了详细的说明与操作外,还计算机9.9万字
- 会员在物联网及大数据被广泛应用的时代背景下,计算机网络在人们的日常生产生活中的应用比重越来越大,并潜移默化地改变着人们的生产生活方式。在计算机网络中,应用最广泛的是局域网。本书对局域网的组建、管理与维护进行全面剖析,向读者揭开局域网的神秘面纱,在熟悉局域网知识要点的同时,重点培养读者的动手能力和专业思维能力。全书共9章,内容包括局域网概述、局域网基础技术、局域网网络设备、无线局域网的组建、局域网规划与计算机10.8万字
- 会员本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能计算机17.3万字
- 会员本书以简洁的语言介绍了使用Word和InDesign编辑与排版文档所需掌握的主要功能、操作方法和实用技巧。本书提供了动手实践案例实战疑难解答几个栏目,以便增强学习效果,使读者可以更好地将理论知识与实践相结合。本书共9章,内容分为Word和InDesign两部分:Word部分中的内容主要包括文档基本操作和页面设置、文本编辑和格式设置、创建和设置表格、插入和设置图片、图文表混排、创建和使用样式与模板、计算机9.9万字
- 会员本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字