会员
科学+预见人工智能
更新时间:2019-01-05 00:51:16 最新章节:推荐语
书籍简介
在科学技术发展一日千里的今天,“人工智能”成为了时代热词。人工智能引领的科技浪潮席卷而来,正从方方面面改变着你我的生活、推动着社会和时代的进步。关于人工智能,每个人有着不同的解读。在本书中,你将看到科学家、投资人,甚到艺术家,从各自的角度畅谈对科学技术的独到见解,探讨人工智能未来发展的无限可能。李开复、张亚勤、张首晟、李飞飞、鲁白、张元豪、梁晗、杨培东、鲍哲南等20余位科学家通过对从业领域的深度思考和对科技发展规律的总结,勾勒出“科学复兴,跨界共振”的美好愿景。《科学+预见人工智能》对于人工智能的讨论深入浅出,观点犀利,适合人工智能领域从业者、研究者、关注者阅读与探讨。
品牌:人邮图书
上架时间:2017-05-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
王晶 李贵民主编 长城会编
同类热门书
最新上架
- 会员Sora是一个文本生成视频工具,本书介绍了Sora在视频生成领域的巨大潜力。本书共9章,系统讲解人工智能的演进、Sora的应用实践、Sora深度解析、Sora的挑战与未来等。本书内容全面、图文并茂、经典易懂,适合想要学习Sora的初学者,以及想要学习文本生成文本、文本生成图片、文本生成视频等内容的人工智能爱好者、自媒体从业人员、短视频制作者、设计师、相关专业的企业和高校人员阅读。计算机3.2万字
- 会员《ChatGLM3大模型本地化部署、应用开发与微调》作为《PyTorch2.0深度学习从零开始学》的姊妹篇,专注于大模型的本地化部署、应用开发以及微调等。《ChatGLM3大模型本地化部署、应用开发与微调》不仅系统地阐述了深度学习大模型的核心理论,更注重实践应用,通过丰富的案例和场景,引导读者从理论走向实践,真正领悟和掌握大模型本地化应用的精髓。全书共分13章,全方位、多角度地展示了大模型本地化计算机13万字
- 会员本书是一部系统介绍AI数字人技术的专业著作,涵盖了数字人的定义、发展历程、关键技术及应用实践等内容,全书共分3部分。在技术基础部分,首先介绍了数字人的定义、发展历程、分类和应用场景,接着详细解析了数字人系统的架构设计、视觉算法和语音合成技术的原理,以及语义理解和知识表示技术如何提升数字人的智能和表现力。在应用实践部分,带领读者深入探索数字人的创作流程,从内容策划、角色建模到交互设计,每一步都进行了计算机26.2万字
- 会员机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字
- 会员本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字
- 会员本书主要介绍如何通过动态系统学习控制律,从而使机器人具备实时反应能力。本书首先介绍机器人学习数据的收集方法,然后重点讲解使用动态系统学习控制律的核心技术,使用动态系统进行轨迹规划的方法,以及使用动态系统进行柔性控制和力控制的方法。本书提供大量应用示例,包括机械臂、拟人手和仿人机器人的全身控制等。本书要求读者熟悉关于机器人控制的基础知识,并熟悉机器学习、统计、优化以及动态系统等相关内容,适合作为高等计算机20.3万字
- 会员本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字
- 会员本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字